Localized Jacobian ILU preconditioners for hydraulic fractures
نویسندگان
چکیده
منابع مشابه
High order ILU preconditioners for CFD problems
This paper tests a number of ILU-type preconditioners for solving indeenite linear systems which arise from complex applications such as Computational Fluid Dynamics. Both point and block preconditioners are considered. The paper focuses on ILU factorization which can be computed with high accuracy by allowing liberal amounts of ll-in. A number of strategies for enhancing the stability of the f...
متن کاملMulti-Elimination ILU Preconditioners on GPUs
Iterative solvers for sparse linear systems often benefit from using preconditioners. While there are implementations for many iterative methods that leverage the computing power of accelerators, porting the latest developments in preconditioners to accelerators has been challenging. In this paper we develop a selfadaptive multi-elimination preconditioner for graphics processing units (GPUs). T...
متن کاملExperimental Study of ILU Preconditioners for Indefinite Matrices
Incomplete LU factorization preconditioners have been surprisingly successful for many cases of general nonsymmetric and indeenite matrices. However, their failure rate is still too high for them to be useful as black-box library software for general matrices. Besides fatal breakdowns due to zero pivots, the major causes of failure are inaccuracy, and instability of the triangular solves. When ...
متن کاملNumerical Experiments with Parallel Orderings for Ilu Preconditioners
Incomplete factorization preconditioners such as ILU, ILUT and MILU are well-known robust general-purpose techniques for solving linear systems on serial computers. However, they are difficult to parallelize efficiently. Various techniques have been used to parallelize these preconditioners, such as multicolor orderings and subdomain preconditioning. These techniques may degrade the performance...
متن کاملInexact Jacobian Constraint Preconditioners in Optimization
In this paper we analyze a class of approximate constraint preconditioners in the acceleration of Krylov subspace methods fot the solution of reduced Newton systems arising in optimization with interior point methods. We propose a dynamic sparsification of the Jacobian matrix at every stage of the interior point method. Spectral analysis of the preconditioned matrix is performed and bounds on i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2006
ISSN: 0029-5981,1097-0207
DOI: 10.1002/nme.1528